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Abstract

The paper deals with the problem of nonlocal generalization of constitutive models such as microplane model M4
for concrete, in which the yield limits, called stress—strain boundaries, are softening functions of the total strain. Such
constitutive models call for a different nonlocal generalization than those for continuum damage mechanics, in which
the total strain is reversible, or for plasticity, in which there is no memory of the initial state. In the proposed nonlocal
formulation, the softening yield limit is a function of the spatially averaged nonlocal strains rather than the local strains,
while the elastic strains are local. It is demonstrated analytically as well numerically that, with the proposed nonlocal
model, the tensile stress across the strain localization band at very large strain does soften to zero and the cracking band
retains a finite width even at very large tensile strain across the band only if one adopts an “over-nonlocal” general-
ization of the type proposed by Vermeer and Brinkgreve [In: Chambon, R., Desrues, J., Vardoulakis, I. (Eds.), Lo-
calisation and Bifurcation Theory for Soils and Rocks, Balkema, Rotterdam, 1994, p. 89] (and also used by Planas et al.
[Basic issue of nonlocal models: uniaxial modeling, Tecnical Report 96-jp03, Departamento de Ciencia de Materiales,
Universidad Politecnica de Madrid, Madrid, Spain, 1996], and by Stromberg and Ristinmaa [Comput. Meth. Appl.
Mech. Eng. 136 (1996) 127]). Numerical finite element studies document the avoidance of spurious mesh sensitivity and
mesh orientation bias, and demonstrate objectivity and size effect.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Since its inception almost two decades ago (Bazant, 1984; Bazant et al., 1984), the nonlocal continuum
approach to distributed softening damage has generally been accepted as the proper way to avoid spurious
excessive localization and ensure mesh-independent energy dissipation (Bazant and Jirasek, 2002). The
nonlocal models generally work well for the initial post-peak damage, which usually suffices for capturing

*Corresponding authors. Tel.: +1-847-491-4025 (Z.P. Bazant), Tel.: +39-022-399-4278; fax: +39-022-399-4220 (G. Di Luzio).
E-mail addresses: z-bazant@northwestern.edu (Z.P. Bazant), diluzio@stru.polimi.it (G. Di Luzio).

0020-7683/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijs0lstr.2004.05.065


mail to: z-bazant@northwestern.edu

7210 Z.P. Bazant, G. Di Luzio | International Journal of Solids and Structures 41 (2004) 7209-7240

the size effect on structural strength. However, unlike the nonlocal continuum damage model (Pijaudier-
Cabot and Bazant, 1987; Bazant and Pijaudier-Cabot, 1988), the plasticity-based models with softening
yield limit (initiated by Bazant and Lin, 1988b) are unable to simulate properly the far post-peak response
(Bazant and Jirasek, 2002; Jirasek and Rolshoven, 2003; Rolshoven and Jirasek, 2001). In particular,
depending on the plasticity model formulation, it has been proven difficult to simulate the vanishing of
stress at large tensile strain across a damage band, while, for some other plasticity model, at very large
strains, the damage band was shown to localize to zero width. This is a serious problem for dynamic
behavior because the energy absorption capability of the structure with its size dependence is not captured
correctly.

To remedy this problem with nonlocal softening plasticity-based models, Vermeer and Brinkgreve
(1994), Planas et al. (1996) and Stromberg and Ristinmaa (1996) proposed a novel formulation which we
will call “over-nonlocal”. In their formulation, the nonlocal variable is enlarged by a factor m larger than 1,
and then reduced by the (m — 1)-multiple of the corresponding local variable. They demonstrated this
approach for relatively simple tensorial constitutive models of isotropic softening-plasticity.

This study will address the problem of the far post-peak nonlocality for a damage-constitutive model of
the microplane type, and in particular for its recent powerful version for concrete called model M4 (Bazant
et al., 2000; Caner and Bazant, 2000). Aside from the over-nonlocal aspect of the formulation, an alter-
native new approach to far post-peak behavior will be proposed. It will exploit the fact that, in model M4,
the strain-softening behavior is completely characterized by strain-dependent yield limits (called the stress—
strain boundaries). It will be shown that the easiest way to achieve a satisfactory far post-peak behavior,
with a vanishing tensile stress across the damage band, is to make these limits functions on the nonlocal
strain instead of the local strain. This makes it possible to simulate the transition to complete fracture.

Quasibrittle materials, such as concrete, rocks, ceramics, sea ice, and fiber composites, exhibit distributed
cracking and other softening damage which needs to be described as a strain softening continuum. Already
in the mid-1970s (Bazant, 1976) it was recognized that the concept of softening continuum damage leads to
serious problems (Bazant and Jirdsek, 2002)—the boundary value problem becomes ill-posed and the
numerical calculations cease to be objective, exhibiting pathological spurious mesh sensitivity and unre-
alistic damage localization as the mesh is refined. To suppress it and to prevent the damage from localizing
into a zone of zero volume, the continuum theory must be complemented by certain conditions called
‘localization limiters’, involving a characteristic length of the material (Bazant, 1976; Bazant and Oh, 1983;
Bazant et al., 1984; Bazant and Belytschko, 1985).

As the simplest localization limiter, one may adjust the post-peak slope of the stress—strain diagram as a
function of the element size. This is done in the crack band model (Bazant, 1976; Bazant and Oh, 1983),
which is the model most widely used in practice and adopted in commercial codes (DIANA, ATENA,
SBETA, etc.). Another popular regularizing technique uses a second-order gradient model (Aifantis, 1984;
Zbib and Aifantis, 1988; Lasry and Belytschko, 1988; Miihlhaus and Aifantis, 1991; de Borst and
Miihlhaus, 1992a,b; Vardoulakis and Aifantis, 1991; Pamin, 1994). Recently, an effective modification of
the gradient approach has been developed by Peerlings et al. (1996). A different gradient-type regularization
model is based on the concept of Cosserat continuum (Cosserat and Cosserat, 1909), which is able to limit
localization in a shear band but not in tension (Miihlhaus and Vardoulakis, 1987; de Borst, 1991; Stein-
mann and Willam, 1992). A simple regularization technique, which works only for a limited range of
loading rates, is the viscoplastic regularization, in which some artificial strain-rate dependent terms are
inserted into the constitutive law (Needleman, 1988; Loret and Prevost, 1990).

A broad class of localization limiters is based on the concept of a nonlocal continuum, which is used in
this work. The nonlocal concept was introduced in the 1960s (Eringen, 1966; Kroner, 1968; etc.) for elastic
deformations and later expanded to hardening plasticity. In a nonlocal continuum, the stress at a certain
point depends not only on the strain at that point itself but also on the strain field in the neighborhood of
that point. Bazant (1984) and Bazant et al. (1984) introduced the nonlocal concept as a localization limiter
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for a strain-softening material. This formulation was soon improved in the form of the nonlocal damage
theory (Pijaudier-Cabot and Bazant, 1987; Bazant and Pijaudier-Cabot, 1988), nonlocal plasticity with a
softening yield limit (Bazant and Lin, 1989) and nonlocal smeared cracking (Bazant and Lin, 1988b), and
was demonstrated in practical problems (Bazant and Lin, 1988a, 1989; Saouridis and Mazars, 1992).

The governing parameter in the nonlocal continuum is the material characteristic length / depending on
the size of the neighborhood over which the strain or some other variable is averaged. When / is equal to or
less than the element size, the nonlocal formulation reduces to a local formulation. The characteristic length
has a major influence on the softening behavior of structure. In the early studies, this length was assumed to
be correlated to the maximum aggregate size d,, [ = 3d, (Bazant and Oh, 1983). However, it is now ac-
cepted that the characteristic length / is also influenced by other parameters (especially Irwin’s charac-
teristic size of the fracture process zone). Experience shows that the optimum value of / can change
significantly from one type of problem to another, which could be explained by the fact that the directional
dependence of microcrack interactions (Bazant, 1994; Ozbolt and Bazant, 1996) is ignored.

Classically, the nonlocal approach has been applied to the standard constitutive models expressed in
terms of the stress and strain tensors and their invariants. During the last decade, the earlier nonlocal
approach has been introduced into an early version of the microplane model (Bazant and Ozbolt, 1990;
Ozbolt and Bazant, 1996), in which the constitutive behavior is characterized in terms of stress and strain
vectors acting on arbitrarily oriented planes in the material (Bazant, 1984; Bazant and Oh, 1985). The
objective of this paper is to combine the microplane model with the recently improved nonlocal approach
that leads to a correct localization behavior, and demonstrate it for a recent version of microplane model
employing the concept of softening stress—strain boundaries. Although the main advantage of microplane
model lies in the simulation of damage for complex compressive triaxial stress histories, the comparisons
with experiments will have to focus on tensile fracture because there are hardly any test data on damage
localization for such histories.

2. Review of microplane model

The microplane constitutive model is defined by a relation between the stresses and strains acting on a
plane in the material called the microplane, having an arbitrary orientation (characterized by its unit
normal #;). The basic hypothesis, which enhances stability of post-peak strain softening (Bazant, 1984), is
the kinematic constraint, consisting in the fact that the strain vector ey on the microplane (Fig. 1a) is the
projection of the strain tensor e, i.e., ey; = €;n;. The normal strain on the microplane is ey = n;ey;, that is,

EN = Nijfij; (l)

Fig. 1. (a) Strain components on general microplane; (b) directions of microplane normals (circles) for system of 21 microplanes per
hemisphere; (c) directions of microplane normals (circles) for system of 28 microplanes per hemisphere.



7212 Z.P. Bazant, G. Di Luzio | International Journal of Solids and Structures 41 (2004) 7209-7240

where N;; = n;n; (and the repetition of the subscripts, referring to Cartesian coordinates x;, implies sum-
mation over i = 1,2, 3). The shear strains on each microplane are characterized by their components in
chosen directions M and L given by orthogonal unit coordinate vectors 7 and I, of components m;, /;, lying
within the microplane. The unit coordinate # is chosen and I is obtained as / = 7 x 7#. To minimize
directional bias, vectors 7 are alternatively chosen normal to axes xj, x;, or x3. The shear strain components
in the directions of 7 and 7 are e = m;(e;n;) and €, = I;(¢;n;), and by virtue of the symmetry of tensor ¢,

ey = M€, e, = L€y, (2)

in which M;; = (mn; + m;n;)/2 and L; = (Iin; + 1;n;) /2 (Bazant and Prat, 1988).

Because of the kinematic constraint relating the strains on the microlevel (microplane) and macrolevel
(continuum), the static equivalence (or equilibrium) of stresses between the macro- and microlevels is ex-
pressed by the principle of virtual work (Bazant, 1984), written for the surface Q of a unit hemisphere:

2n

?0,1156,-1- = ‘/9(01\756]\/ + O-L(SGL + GM(SGM) dQ. (3)
This equation means that the virtual work of macrostresses (continuum stresses) within a unit sphere must
be equal to the virtual work of microstresses (microplane stress components) regarded as the tractions on
the surface of a sphere (for a detailed physical justification, see Bazant et al., 1996a). The integral physically
represents a homogenization of different contributions coming from planes of various orientations within
the material. Substituting dey = N;;d¢;;, e, = L;;0¢;; and deyy = M;;0¢;;, and noting that the last variational
equation must hold for any variation Je;, one gets the following basic equilibrium relation (Bazant, 1984):

3 .- :
O-ij = ﬁ /QSU‘ dQ = 62 WILSEJH) Wlth Sij = O-N]Vij =+ O'LL,:]' —+ O'MMJ'. (4)
n=1

The numerical integration, indicated above, is best done according to an optimal Gaussian integration
formula for a spherical surface (Stroud, 1971; Bazant and Oh, 1986) representing a weighted sum over the
microplanes of orientations 7#,, with weights w, normalized so that Zﬁ'z, w, = 1/2 (Bazant and Oh, 1985,
1986). An efficient formula that still yields acceptable accuracy involves 21 microplanes (Bazant and Oh,
1986; Fig. 1b); in this work the Stroud’s formula with 28 microplanes has been used (Fig. 1¢). In finite
element programs, integral (4) must be evaluated at each integration point of each finite element in each
time step. The values of N,-(.“ ), Mi(f ) and ij" ) for all the microplanes y = 1,...,N are common to all inte-
gration points of all finite elements, and are calculated and stored in advance.

The most general constitutive relation on the microplane level may give oy, o, and o), as functionals of
the histories of ey, €y, €,. But normally it is suffices to consider that each of oy, 6, and ), depends only on
its current corresponding strain ey, €y, €, because cross dependencies on the macrolevel, such as shear
dilatancy, are automatically captured by interaction among microplanes of various orientations. An
exception is the frictional yield condition relating the normal and the shear components on the microplane
with no strain dependence.

In microplane model M4 (as well as M3, Bazant et al., 1996a,b and M5, Bazant and Caner, 2002), the
constitutive relation in each microplane is defined by (1) incremental elastic relation and (2) stress—strain
boundaries (softening yield limits) that cannot be exceeded. The normal components are split into their
normal and deviatoric parts, i.e. oy = oy + 6p, €y = €y + €p, and then the incremental elastic relations are
written as

dO’V = EVdéV7 dO'D = EDdGD7 dO'M = EvrdﬁM7 dUL = Evrd€L7 (5)

where Ey, Ep and Er are the microplane elastic moduli which are always positive and, in the case of virgin
loading, are constant and expressed in terms of Young’s modulus £ (macroscopic) and Poisson’s ratio v;
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Ey =E/(1 —=2v),Ep =5E/[(1 +v)(2+ 3n)] and Er = nEp. The value n = 1 is, for various reasons, optimal
(Bazant and Prat, 1988; Carol and Bazant, 1997). For unloading and reloading, E,, Ep and E7 are functions
of the current strain and the maximum strain reached so far. The stress—strain boundaries, which may be
regarded as strain dependent yield limits, consist of the following conditions:

oy < Fy(ev), Fy (ev) <oy <Ff(ep), F (ep) < ap < Fp (ep),

‘O'Ml <FT(0N7 €y, €r, 6111); |0'L| <FT(0'N7 €y, €r, 6111),

(6)

Except for the last two conditions, which model friction, interactions among various components need not
be considered, since the cross effects are adequately captured by interactions among various microplane due
to the kinematic constraint. The unloading conditions are formulated separately for each microplane
component. Unloading occurs when the incremental work of a microplane component becomes negative,
i.e. when, separately for each component:

GNAGN < O, GVAEV < O, UDAGD < 0, O'MAGM < O, GLAEL < 0. (7)

Reloading for any component occurs when the corresponding condition among the foregoing is violated
while the corresponding condition (6) is a strict inequality. The expressions for the boundary functions,
identified for model M4 by fitting the available test data, are given in Appendix A.

3. Basic concept of nonlocal model

The nonlocal model, in general, consists in replacing a certain local variable f(x), characterizing the
softening damage of material, by its nonlocal counterpart f(x). The nonlocal operator is defined as

7(x) = / a(x, £)/(8) AV (2), (8)

where V' is the volume of the structure, x, £ are the coordinates vectors, and a(x, &) is the normalized
nonlocal weight function:
. x(x — &)
ax, &) = . 9
%O = T -narm ®)
Here a(x — &) is the basic nonlocal weight function for an unbounded medium; [, a(x —¢)dV({) is a
constant if the unrestricted averaging domain does not tend to protrude outside the boundaries. The weight
function a(x — £) is often taken as a bell-shaped function. Its analytical expression, used in this work, is:

= |x =& /R if0<|x — & <R,
o8 ={§ if R<[x & 10

where R is a parameter proportional to the material characteristic length / (Fig. 2 for one- and bi-
dimensional case), R = p,/. Note that [x — &| = 1/ (x; — &)” and a(x, x) = 1. The coefficient p, is determined
so that the volume under function o be equal to the volume of the uniform distribution
(py = 15/16 = 0.9375 for 1D, p, = </3/4 = 0.9086 for 2D, p, = v/35/4 = 0.8178 for 3D).

The averaging function (10) is doubtless a simplification. Properly, « should also depend on the ori-
entation of the principal stress axes at £ and x, as proposed by Bazant (1994) on the basis of microme-
chanics analysis of a random system of interacting and growing microcracks. A combination of that kind of
nonlocal continuum with the microplane model was implemented by Ozbolt and Bazant (1996), and al-
lowed an improved representation of opening and shear fractures with the same material model (Bazant
and Ozbolt, 1990). However, the implementation is more complicated and is not needed for the present
purpose.
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Fig. 2. Normalized nonlocal bell-shaped weight function: (a) in one-dimension, (b) in two-dimension.

Vermeer and Brinkgreve (1994), Stromberg and Ristinmaa (1996), and Planas et al. (1996) (see also
Bazant and Planas, 1998), introduced a refinement of the standard nonlocal formulation, here called over-
nonlocal, in which the averaged nonlocal variable f(x) is replaced by the following over-nonlocal variable:

J(x) =mf(x) + (1= m)f (x) (11)

(a) (b) a
o,

@dorr—
//
/"
L
Yol 06}
m=1
5
ol
05k
s
04
4+ 1Y
‘m=2 o}
02
al
1 ;."‘ ’r._} of
- 08 08 04 02 0 02 04 08 08 1 -1 08 06 04 02 0 02 04 08 s 1

Fig. 3. (a) Linear softening; (b) rectangular weight function; (c) strain profiles in the localization band for various values of m; (d) strain
profiles in the localization band for m ~ 1.
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Fig. 4. Strain-softening bar: (a) strain profile along the bar for m = 1.2; (b) strain profile along the bar for m = 1; (c) strain profile along
the bar for m = 0.9; (d) stress—displacement curves for different values of m.

in which x is the nonlocal variable obtained from Eq. (8), and m is an empirical coefficient. Stromberg and
Ristinmaa (1996) called it the ‘mixed local and nonlocal model’. Planas et al. (1996) called this formulation a
‘nonlocal model of the second kind’. The results of both confirmed the spurious localization to be avoided
even at large strains if m > 1. Planas et al. (1996) rigorously proved, for a uniaxial stress field, that the
localization zone is finite if and only if m > 1. It was also proven (Bazant and Planas, 1998) that, for the
special case of uniaxial stress, the formulation with m > 1 is equivalent, in terms of strain rate distribution at
bifurcation from a uniform strain state, to the nonlocal damage model of Pijaudier-Cabot and Bazant (1987).

4. Nonlocal generalization of microplane model

The original nonlocal model of Bazant (1984) and Bazant et al. (1984) led to spurious zero-energy
instability modes (Bazant and Cedolin, 1991), which had to be suppressed by an artificial elastic restrain, at
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the cost of making softening to zero stress unattainable. These difficulties can be traced to the nonlocality of
the incremental elastic strains. On the other hand, according to the later findings of Pijaudier-Cabot and
Bazant (1987) and Bazant and Pijaudier-Cabot (1988), the nonlocality of inelastic strain is free of this
undesirable side effect.

The microplane model differs from the classical tensorial model of plasticity and continuum damage by
the fact that the stress—strain boundaries, which define the inelastic strain, depend on the total strain only.
This suggests a nonlocal generalization in which the stress—strain boundaries are evaluated from the
nonlocal total strains (instead of being evaluated from the local total strain, with the nonlocal averaging
postponed until after the inelastic strains have been evaluated).

Based on these considerations, a proposal is here made for a new kind of nonlocal formulation in which
the elastic stress increments are local and the boundaries in Eq. (6) are modified as follows:

oy < Fy(éy), oy <F/ (&), F; (ép) <op < Fy (ép), (12)
|0'M| < FT(O'N, €y, €1, g111), |UL‘ < FT(O'N, €y, €1, €111)~

For the sake of generality, the arguments in these conditions are considered as over-nonlocal;
€y = ékk/37 ey = Nijéijv €p = €y — €y, em = Mijéijv € = Lijéijy (13)

where €; = m¢;; — (m — 1)e;;, €; are the Cartesian components of €, and the over-bar denotes the nonlocal
counterpart of the variable as defined in Eq. (8). The standard nonlocality is the special case for m = 1.

Considering a state of uniaxial tension, ¢, in the direction normal to a localization band, we can easily
explore the basic properties of the model. The proposed nonlocal formulation is analyzed for the case of a
uniaxial stress—strain relation of the form:

for xeZ: o=f[e(x)] else: o= FEe(x). (14)

Stress ¢ is assumed to be uniform, % is the localization band of softening material, and f is a mono-
tonically decreasing function approaching 0 for € — oco. Let us check whether the displacement profile (x)
could have the following expression:

0002 7 . _
|
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0.0016 e 12 Elements
4 | 24 Elements
c
S o002 | ———e—ee 48 Elements
14
I ‘ L=12cm
1 A= 9cm?
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0.0004 — < L ;F O 5
o 1 | 2 | [ o ]
0.00 T T T T T 1

0.00 0.04 0.08 0.12 F=cA 4_i i—} F=cA

coordinate [m]

(@ (b)

Fig. 5. (a) Longitudinal strain along the bar for various degrees of mesh refinement; (b) Geometry description for the one dimensional
problem.
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e(x) :%+ ex (%), (15)

where € (x) is the unknown strain profile in the localization band % . For the sake of simplicity, we assume,
in Z, a linear softening function, and for the weight function « the rectangular function (Fig. 3b).

Considering the over-nonlocal refinement and the linear softening function (Fig. 3a), we can rewrite Eq.
(14) as

for xe F: 6=090— H(mé(x) + (1 —m)e(x) — ). (16)

Averaging the strain in Eq. (15), the nonlocal strain €(x) in Eq. (16) has, according to Eq. (8), the following
expression:

(@) 300+ (b) 2500.0 o
17\ @ ————- 4 Elements
1 200004 { z """~ °-- 12 Elements
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S L 1500.0
= 8
© T S .
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Fig. 6. Load-displacement curves for various degrees of mesh refinement: (a) local stress—strain law; (b) nonlocal microplane model; (c)
local microplane model; (d) nonlocal microplane model obtained through the averaging of the inelastic strain (Appendix B).
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Fig. 7. (a) Geometry of the rectangular panel; (b) mesh with 30 finite elements; (c) mesh with 120 finite elements. Load—displacement
curves for the two different refined meshes: (d) local microplane model (e) nonlocal microplane model.

0= (15+ [ ertemie—nac). (1)

where, for a very long bar (extending from —oo to +00), [ = ff(: (¢ — x) d¢& = constant. Since Eq. (17) is
defined in the localization band &, and e5(x) = 0 for x ¢ &, we can evaluate the integral in Eq. (17) from
—h/2 to h/2, where h is the length of localization zone. Substituting Eq. (17) into Eq. (16), we obtain:

m [
B=7[ e (E)a(E — x)dE + (1 — m)er(x), (18)

/2
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where B =€) — (6 —09)/H — 6/E is a constant for a given uniaxial tension ¢. Eq. (18) is a Fredholm
integral equation of the second kind. For the sake of simplicity, Eq. (18) is solved numerically for a fixed
value of /4 chosen as 4 = 0.8/. The bar is discretized into equal elements of constant es. The integral is
evaluated using a single integration point in the center of each element. The resulting linear system is solved
for different values of m.

Fig. 3 shows the strain profiles, for different values of m. When the standard nonlocal model (m ~ 1) is
considered, the strain distribution has the form of Dirac’s é-function (Fig. 3d). The total elongation of the
bar can be considered as the sum of the elastic part, proportional to the bar length, and the inelastic part,
independent of the bar length (as shown by Planas et al., 1993). Thus, this formulation (m =~ 1) is equivalent
to a cohesive crack model. For m < 1, the strain distribution along the bar has an unrealistic shape: at the
midlength of the localization zone, the value of the strain is less than its value at the boundaries, between
the localization band and the rest of the bar, where there is no continuity of the strain profile (Fig. 3c). On
the other hand, using m > 1, the strain profile is realistic: (1) it reaches the maximum value at the midlength
of the localization band; (2) the strain is continuous at the boundaries, between the localization zone and
the rest of the bar, where the inelastic strain continuously approaches the elastic one (Fig. 3c). A more
rigorous and complete study, presented in Planas et al. (1996) and also in Bazant and Planas (1998, Chapter
13), which treats the length of the localization zone, 4, as unknown in Eq. (18), shows that # is finite if and
only if m > 1. It needs to be noted, however, that the present analysis with fixed 4 leads to an admissible
solution for only one specific value of m, and so the profiles for other values of m do not represent actual
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Fig. 8. Discretization meshes, geometry and load—deflection curves for the tensile test with uniform (a) and concentrated (b) dis-
placement control.
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admissible solutions. The actual solutions for other m would be characterized by other values of 4 and

different profiles.

and taking into

=7 UéE,

where V
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(

across the localization band also be easily clarified. Noting
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)

7

(

o

)

=7 Jyelr+x
account Eq. (14), we must have

The behavior at very large strain,

that €(x)

(19)

this expression becomes

>

if we assume that ¢ — o, > 0 at

constant + oo) — 0, which cannot be equal to the right-hand side

if we assume that ¢ — 0 and ¢ — oo

0 for € — co. Now,

= 0, and so this condition is satisfied. On the other hand,

f(e)

£(0+00) =

where i

(

if the residual stress ¢ is finite. Hence, the residual stress across the band must vanish at very large dis-
placement. This is not true for the classical nonlocal model with averaging of inelastic strain as shown

€ — 00, the left-hand side in Eq. (19) is f
numerically by Jirasek (1998).

The foregoing favorable properties of the nonlocal model are gained by making only the softening

microplane stress—strain boundaries (strain

softening yield limits) function of the nonlocal strain. It is

crucial to recognize that the elastic strains on the microplane (as well as any hardening inelastic strains)
must depend only on the local strain, or else one would engender zero energy instability modes (such modes

plagued the original nonlocal strain-softening continuum model, the so called imbricate model, and had to

Fig. 9. Crack propagation for two different tensile tests. Left: for the concentred load. Right: for the distributed load.
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be suppressed by parallel elastic coupling, which precluded the strain-softening from terminating with zero
stress). This means that, in every constitutive law in which the softening depends on the strains, objectivity
can be reached by making the softening function dependent on the nonlocal strains.
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Fig. 10. Three-point bending (test of Bazant and Pfeiffer, 1987): geometry description, and meshes used for three different beam sizes.
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three-point bending of Fig. 10: (a) linear regression plot; (b) Bazant’s size effect law; (c) load—deflection curves for the three different
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As an example, a one-dimensional strain-softening bar (with cross section area 4 cm? and length 10 cm)
is numerically simulated for different values of m. The nonlocal generalization of microplane model M4 is
used, with / = 7.62 cm. This numerical example confirms what was observed in the previous simplified
model—only if the over-nonlocal formulation is used, a realistic description of the fracturing process is
achieved. Fig. 4 shows that the fracturing strain is localized into a finite length, independently of the
number of elements, only if m is larger than 1 (Fig. 4a). On the other hand, if the classical nonlocal model
(m =1) is adopted, the fracturing strain tends to localize into one element (Fig. 4b) even if the global
response is correct (i.e., objective) in terms of the stress—displacement curve (Fig. 4d). Using a value of m
less than 1 (i.e. m = 0.9), regularization is not achieved: the strain localizes into one element (Fig. 4c). Fig.
4d shows that, for m = 0.9, the stress—displacement curve shows a very steep post-peak branch approaching
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a snap-back. The slope of the load—displacement diagram could be adjusted by changing the softening
parameters, and so one cannot say that m = 1 gives a correct global response and m = 0.9 does not.

The reason why the classical continuum with the averaging of inelastic strains (or inelastic stresses) does
not have the desired localization properties is that the inelastic strains (or inelastic stresses) in the models
used are not functions of the nonlocal total strains. In this kind of models, no so much improvement was
found. After adding a certain artificial feature, which makes m variable, satisfactory behavior can be
achieved (see Appendix B).

5. Numerical studies

Without a nonlocal formulation (and without the use of the crack band model), the finite-element codes
with strain softening exhibit unacceptable spurious mesh sensitivity. Especially, they cannot capture the size
effect and crack propagation direction at a small angle with respect to the mesh line (directional bias of the
mesh). To demonstrate that the present nonlocal formulation is free of these problems, seven examples of
finite elements analysis using the over-nonlocal formulation with nonlocal stress—strain boundaries are
presented. Monotonic loads and small strains and rotations are assumed. In examples number 1, 2 and 4,
three-dimensional 8-node brick elements and implicit equilibrium solutions are used, while in the remaining
examples a plane-strain analysis with explicit time integration is performed (the details of the numerical
algorithm can be found in Appendix C).

1. One dimensional bar. Consider a straight bar of length L and a constant cross section of area A subjected
to uniaxial tension (Fig. 5a). The material parameters are / = 7.62 cm, m = 1.5 and £ =27,500 MPa. The

RN LI
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Fig. 12. Three-point bending example for testing the directional bias of mesh: geometry, meshes discretization, and load—displacement
curve.
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bar is loaded by a displacement applied at one end. To fix the place of damage, one quarter of the bar

adjacent to the opposite end is assigned a Young’s modulus 7.5% smaller than the rest. When the stress

reaches the tensile strength limit

the softening starts in the weak element and, in a local formulation, all

)

the other elements undergo elastical unloading. The nonlocal formulation of microplane model is able to

prevent the localization of softening into one element. The strain distributions along the bar for various

48 elements) are shown in Fig. 5b, and the load displacement

, 24,

12

degrees of mesh refinement (4,

curves are plotted in Fig. 6.
2. Direct tensile test. The rectangular panel in Fig. 7a, the same as considered by Bazant and Ozbolt (1990),

27,500 MPa. Because of

symmetry, only one-quarter of the specimen is modeled. To fix the place of localization, a weak element,

is loaded in tension. The material parameters are / = 7.62 cm, m = 1.5 and E

x 107

|

10
12
14
a

as

5
25
as

- N M ST W B KD

2
a
&
a
1
1
2

x 100
a

i

* 10

|

o
o
o

I SN EED RN
CAFEEEAN@nEE]
IS EEFNERNE]
FESSNSEEEEEE

J Iy T ]
IS RN
T rrry
FEASEINEEEE)

l ' I
L8 INNNENNEEN

P Ty

TEEEEREEIIAEAANE]
TSNS ANTAN

T T

FTNESEEEEERRNAR|

Yy T
NSRS EEENII NN

T A
rl L T T Ty
NSNS g AAERn]
J I T
y Jy A T
(SNSRI S RN

L T r 7 F ATy Ty
I TSNS E R RN RSN ENTANN
I NN AR IRANAEAD]
Iy
A
NSRRI SR Ean
IR NSNS SN RN EE]
NSRS SN S NN
T rrigg
g et T
Iy
I ey
I RIS SRR AA RN
e
J P g g e Tl
550 7 6 I 0 0 O O 7 4 A B i ) i
I SN NSNS E NIRRT
I S EEE TS E R IAATANAD]
ISR NS SEE IR A RN

J
I
T
)
I
I
]
I

a [ L] 1) 0
S g0 - = nodmn

11T

x 107

ﬁ

Fig. 13. Three-point bending example for testing the directional bias of mesh: crack distribution for the regular mesh (left) and for the

slanted mesh (right) at different loading levels.
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shown darker in Fig. 7, is introduced by reducing the elastic modulus by 7.5%. To show that the results
are not mesh-sensitive, two finite element meshes are used: one with 30 (Fig. 7b) and the other one with
120 (Fig. 7c) finite elements. Fig. 7d and e shows the load—displacement curves for both meshes with
local and nonlocal microplane model.

3. Notched tensile test. The test is described in Fig. 8. The Young’s modulus of loading plates is 10-times
higher than that of concrete. At the vertical edges, two types of displacement control are considered: a
uniform displacement (non-rotating plates) and a point displacement (rotating plates), as shown in Fig.
8. The material parameters / = 3.81 cm, m = 1.5 and E =27,500 MPa. Fig. 8 shows the load—displace-
ment curves for both cases. The reader can clearly see, that the curves tend to zero when the displace-
ments become large enough. In Fig. 9 one can see the crack distribution at different load levels, on
the left side for rotating platens (realistic fracture propagation) and on the right side for non-rotating
platens (the displacement being almost uniform across the ligament).

4. Size effect in three-point bending. One important consequence of nonlocality is the size effect. The three-
point-bending tests of Bazant and Pfeiffer (1987) are considered. Fig. 10 shows the geometry, similar for
each size, and the finite element meshes for three different specimen sizes, with size ratio 1:2:4. The small-
est specimen depth is d = 7.62 cm. The thickness is » = 3.81 cm, for each size. The characteristic length is
taken as / = 3.175 cm, and m = 1.2. The tensile strength of concrete and the elastic modulus are assumed
as f{ = 2.8 MPa and E=27,500 MPa. The nominal stress at failure is defined as gy = Pua.x/db, where
Prax 18 the maximum load. Comparison with the test data is shown in Fig. 11. The curves in Fig. 11 rep-
resent a good fit of the present nonlocal model to the test results smoothed by Bazant’s size effect law
(Bazant, 1984; Bazant and Pfeiffer, 1987; RILEM Committee QFS, 2004):

Bf!
V1+D/Dy’

in which constants B and D, haven been determined from the test data (for the most general derivation
from dimentional analysis and asymptotic matching, see Bazant, 2004). The average measured maximum
loads for the three specimen sizes are 3105, 4635 and 7784 N, while those obtained from the present
nonlocal model are 3260, 4876 and 8052 N, respectively, the errors being 4.9%, 5.2% and 3.4%.

oy —

(20)

Fig. 14. Three-point bending example for testing the directional bias of mesh: crack distribution for the regular mesh (left) and for the
slanted mesh (right) at different loading levels for the local microplane model M4.
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10, 1
ln 11

Fig. 15. Single-edge-notched beam subject to antisymmetric four-point shear loading: geometry, mesh discretization, and crack
propagation for the four point shear (based on maximum principal strain).

5. Elimination of directional mesh bias. As mentioned before, the crack band model is not able to simulate a
fracture propagation direction at small angle with the mesh line. This problem is studied using the speci-
men geometry, boundary condition and the meshes shown in Fig. 12. The lines of the slanted mesh are
inclined by about 23°. Fig. 12 presents the load—displacement curves for both cases, for material param-
eters / = 2.54 cm and E =27,500 MPa. One can see that both meshes give practically the same load—dis-
placement curves, and the same is true for fracture propagation at different load levels (Fig. 13). Using a
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Fig. 16. Concrete cone pull-out of headed stud: (a) geometry description; (b) load—displacement curve compared with the maximum
experimental load.

local microplane M4 with no regularization, the numerical solution exhibits a strong mesh bias for the
fracture propagation (Fig. 14).

Antisymmetric four-point-shear. To show how the model is also able to predict a crack with a curved
path, a notched specimen, subjected to an antisymmetric four-point shear loading, is considered (Fig. 15,
a test used by Schlangen, 1993). The thickness of the beam is 38 mm. A mesh of 864 triangular 3-node
elements is used (Fig. 15). The material parameters are / = 1.905 cm, m = 1.25 and E=27,500 MPa.
When the antisymmetric load is applied, a crack starts from the left corner of the notch and grows
upwards to the left side of the loading platen. A second damage zone develops from the top surface of
the specimen. Fig. 15 illustrates the crack propagation and cracking distribution at subsequent loading
stages. Note that the experimentally observed curved crack path (Schlangen, 1993) is qualitatively
reproduced, even if the second damage zone keeps growing for large displacement (this is due to the
effect of the boundary conditions).

6. Concrete cone pull-out of headed stud. The case of headed anchor subjected to a tensile load is considered
(UE Anchor Project, 2001). Many experimental data and some numerical studies have shown how the
headed stud is able to transfer considerable tensile load without any reinforcement and demonstrated
that the failure mechanism is a cone shaped fracture. Simulation of this problem by the cohesive crack
model is difficult, not only because the crack path is not known a priori but also because a tensile frac-
ture model is insufficient. The failure mode is not of a pure mode I type and a general triaxial constitutive
law is necessary to reproduce correctly the entire response history. The proposed over-nonlocal micro-
plane model is used to simulate the ultimate loads measured in pull-out test of a cast-in situ anchor, with
bar diameter 12 mm, embedment length equal 4, = 65 mm, and head (stud) diameter 24 mm (see Fig.
16). The assessment of the parameters of the constitutive models is done by fitting the available mechan-
ical properties of the concrete obtained from independent tests: compressive strength f] = 30.8 MPa,
tensile strength f/ =2.86 MPa, Young modulus E. = 35 GPa, and fracture energy Gy = 64.5 N/m,
which gives / = 3.6 cm. Furthermore, m = 1.25. The steel bar is considered to be linearly elastic, with
Young’s modulus E; = 210 MPa and Poisson’s ratio vy = 0.3. This assumption is justified by the fact that
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Fig. 17. Concrete cone pull-out of headed stud: evolution of the maximum principal strain for different values of the stud displacement.

the measured ultimate load N, = 44.1 kN leads to a stress in the steel rod (N, /(0.251$?) = 389.9 MPa)
lower than the yielding strength. For numerical simulations by the microplane model, an axi-symmetric
mesh of CST finite elements is used and the diameter of the concrete block is 25 cm. The mesh is
constrained in the direction of the applied load, with sliding supports located at a distance of 23 cm from
the axis of the stud. Fig. 16b compares the over-nonlocal simulation with the measured ultimate load.
The numerical prediction (43.7 kN) is about 1.0% smaller than the experimental data (44.1 kN). Fig.
17 further shows the contours of the maximum principal strain computed by the microplane model at
different values of the load-point displacement. As one can see, the strain localizes in a narrow localiza-
tion band which starts from the bearing edge of the head and propagates towards the upper surface of
the specimen, giving a fracture cone similar to observations in pull-out tests.

7. Wave propagation in strain-softening bar. Since spurious sensitivity to the mesh size appears not only
for static but also for dynamic response, the problem of wave propagation along a one-dimensional
bar has been investigated. In the one-dimensional wave equation for a strain-softening material, the
characteristic lines and the wave speed become imaginary when strain-softening occurs. This means
that the problem becomes elliptic, and the loss of hyperbolicity causes the initial value problem to
become ill-posed. Thus, the physical problem cannot be realistically reproduced anymore. Let us con-
sider the example of a one-dimensional bar (Bazant and Belytschko, 1985; Sluys, 1992) shown in



Z.P. Bazant, G. Di Luzio | International Journal of Solids and Structures 41 (2004) 7209-7240

7229

@ L=10cm < L >
A= 1lcm?
n=zs0rs L | 2 | I s
(b) 12.0 | (C) 0.8—
— . 25 elements 06 [ ——mme- 25 elements
= T | S —— 50 elements 11 Tt 50 elements
% I 75 elements = 75 elements
(7] [ S
a0 | 9]
Tl
0.0 e ——— = \
0.0 20 4.0 6.0 8.0 10.0
Coordinate [cm]
(dy3° -—=- 25 elements
——————— 50 elements LA
1 75 elements VIR

Coordinate [crﬁ] v

M 27

N
=}
1 |

o
|

Internal energy [x 107
i

5.0—

0.0 T

-------- 25 elements
50 elements

75 elements

25, 50, 75 elements

Loca ‘M4’
Nonlocal ‘M4’

50 elements

75 elements

T T T 4,0 T el,o T T T )
Coordinate [cm]

0.00

T ' T
0.02 0.04
Time[x 107
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Fig. 19. Stress—strain boundaries for microplane model: (A) frictional boundary; (B) normal boundary; (C) deviatoric boundaries; (D)
compression volumetric boundary; (E) tensile volumetric boundary (Bazant et al., 2000).

Fig. 18a, loaded by a tensile dynamic force at one end, while the other end is fixed. The bar is
subdivided into 25, 50, and 75 elements. The material model is the nonlocal microplane model with
the following material parameters: / =2.54 cm, m = 1.5, E = 27.500 MPa, and f] =2.9 MPa. The
response of the bar is linearly elastic until the loading wave reaches the opposite boundary, where,
due to the reflection of the wave, the stress is doubled and the crack starts to open. If a local
strain-softening were used in the computation, the following problems (Bazant and Belytschko,
1985) would arise: (1) the strain would localize into an arbitrary finite element at the boundary where
the reflection takes place (Fig. 18b); (2) the magnitude of the reflected wave would depend on the mesh
refinement. The use of more elements would reduce the reflected stress wave (Fig. 18d); (3) the energy
consumption would depend on the number of elements used; (4) decreasing the element size, the
energy absorbed by the break of the bar would tend to vanish (Fig. 18f).

Using the nonlocal microplane model, mesh objectivity is achieved. The localization segment keeps a
finite width, independent of the mesh discretization (Fig. 18c); the reflected wave is independent of the mesh
refinement, as one can see from the stress profile after the reflection (Fig. 18e); and the energy dissipated by
the break does not change with mesh refinement (Fig. 18f).
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Fig. 20. Strain distribution along the bar for various values of m.

. Conclusions

. A particular characteristic of the microplane constitutive model M4 for cracking damage in concrete, is
that the yield limits, called the stress—strain boundaries, exhibit softening as a function of the total strain.
This feature, which is required in order to keep memory of the initial state, allows a simple and effective
nonlocal generalization.

. The proposed nonlocal generalization consists in replacing the total local strain by the total nonlocal
strain, but only in the stress—strain boundaries. The elastic strains must still be expressed in terms of
the local strains (or else spurious zero-energy modes of instability would arise).

. By considering localization in a uniform tension field, it is demonstrated analytically as well as numer-
ically that, with the proposed nonlocal model characterized by nonlocal softening boundaries: (1) the
tensile stress across the band at very large strain does soften to zero, and (2) the cracking band retains
a finite width even at very large tensile strains across the band only if one adopts the idea of Vermeer and
Brinkgreve (1994). This idea consists in introducing an over-nonlocal variable, which is obtained as m
times the nonlocal variable minus (m — 1) times the local variable (with m > 1).
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4. The previously proposed nonlocal generalization, based on nonlocality of the inelastic part of strain,
works well only in the early post-peak response. At very large strains across the band, the width of
the cracking band does not retain a finite value, and the tensile stress across the band does not reduce
to zero (which is called the stress locking). However, even if an over-nonlocal formulation is introduced,
it works acceptably only if m is not a constant but a function of the tensile strain across the band (see
Appendix B).

5. Numerical examples confirm the avoidance of spurious mesh sensitivity and orientational mesh bias, and
demonstrate retention of a finite width of crack band as well as realistic modelling of the size effect—the
main consequence of nonlocality.
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Appendix A. Microplane model M4

The constitutive microplane model M4, formulated and tested in Bazant et al. (2000) and Caner and
Bazant (2000), is completely defined on the microplane level. All the material parameters except the
Young’s elastic modulus E are dimensionless. They are divided into the fixed (or constant) parameters,
which are denoted as ¢y, ¢y, ..., and may be taken the same for all concretes, and the free parameters,
which are denoted as ki, k,, k3, k4, and reflect the differences among different concretes. As introduced in the
previous version, model M3, all the inelastic behavior is characterized on the microplane level by the so-
called stress—strain boundaries, which may be regarded as strain-dependent yield limits and exhibit strain
softening (Bazant et al., 1996a). Within the boundaries, the response is incrementally elastic, although the
elastic moduli may undergo progressive degradation as a result of damage. Exceeding the boundary stress is
never allowed. Travel along the boundary is permitted only if the strain increment is of the same sign as the
total stress. Otherwise elastic unloading occurs. These simple rules for the boundaries suffice to obtain on
the macrolevel the Bauschinger effect as well as realistic hysteresis loops during cyclic loading. Different
microplanes enter the unloading or reloading regime at different times, which causes that the macroscopic
response is quite smooth. Experience with data fitting has shown that each microplane stress component
(normal, volumetric and deviatoric) boundaries can be assumed to depend only on its conjugate strain, i.e.,
the boundary stress oy depends only on ey, g only on €, and o, only on €p; see Fig. 19. Only in the shear
boundary, which describes frictional interaction between two different stress components, the normal stress
and the shear stress interact (Fig. 19A). The latest refinement, microplane model M5 (Bazant and Caner,
2002), which can also simulate transition to discrete fracture, is not used here (for further discussions,
especially of the vertex affect, see Brocca and Bazant, 2000, and Caner et al., 2002).

Normal stress boundaries (tensile cracking, fragment pullout, crack closing). The tensile normal boundary
is given as

b <€N — 0102k1>
=F, = Ekjciexp | — Al

Oy N(GN) 1€1 p ( klcj; + <_C4(O'U/Ev)>>’ ( )
where superscript b refers to the stress at the boundary; parameter ¢; controls mainly the steepness of the
post-peak slope in uniaxial tension. The Macaulay brackets, defined as (x) = max(x;0), are used here and in
several subsequent formulas to define horizontal segments of the boundaries, representing yield limits. The
normal boundary is shown in Fig. 19B. Physically, its initial descending part characterizes the tensile
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cracking parallel to the microplane, while its tail characterizes the frictional pullout of fragments and
aggregate pieces bridging the crack from one of its faces. In addition, the closing of cracks after tensile
unloading needs to be represented by a crack closing boundary, defined simply as ¢% = 0 for ey > 0; it
prevents entry of the quadrant of positive ey and negative oy on the microplane level (however, in terms of
uniaxial stress on the macrolevel, this quadrant can be entered because of microplane interactions and
deviatoric stresses).

Deviatoric boundaries (spreading, splitting). The compressive deviatoric boundary controls the axial
crushing strain of concrete in compression when the lateral confinement is too weak to prevent crushing.
The tensile deviatoric boundary simulates the transverse crack opening of axial distributed cracks in
compression and controls the volumetric expansion and lateral strains in unconfined compression tests.
Both boundaries have similar shapes and similar mathematical forms:

Ek
o5 = Fi(ep) =———2 for gp >0, (A.2)
1+ ((60—65k16’6>)

c7kyca0

Ek
ob =F, (—ep) = 16 5 for ap <0. (A.3)

1+ (w)
7K

The deviatoric boundaries are shown in Fig. 19C. Because ¢p = 2/3(ey — €5), the deviatoric boundaries
physically characterize the splitting cracks normal to the microplane, caused by lateral spreading, and their
suppression by lateral confinement.

Frictional yield surface. The shear boundary physically represents friction. To reduce the computational
burden, the frictional boundary can be applied not to the resultant shear stress o7 but to the components o7
and oy, separately. The frictional boundary is nonlinear. It is a hyperbola starting with a finite slope at a
certain finite distance from the origin on the tensile normal stress axis. This distance is gradually reduced to
zero with increasing damage quantified by the volumetric strain. Thus, when the volumetric strain is small,
the boundary provides a finite cohesive stress, which then decreases to zero with increasing volumetric
strain. As the compressive stress magnitude increases, it approaches a horizontal asymptote. The friction
boundary is expressed as

ETk1k2010<—0N —|— O'?V>

b = Fr(—ay) = €m), A4
7= 1) = Frtks + el + oy VD) (A4

where

— cuk
0'2/ = ETklcll eXp | — M s (AS)
cioky

W(er, em) = exp < — {&r = eash) (—em + caskr) [ (canky )] )

enky 14 [(—em + ki) [ (canky)]?

Note that lim oy_...0r = Erk k,, which represents a horizontal asymptote. The foregoing expression in-
volves a finite cohesion, which can be calculated by setting oy = 0 and 6% = Erkici;. When €y > 0, the
friction boundary actually passes through the origin; hence the cohesion becomes zero. The coefficient ¥, in
Eqgs. (A.6) and (A.4) was absent from the original model M4 (Bazant et al., 2000) and has been introduced
by di Luzio (2002) in order to achieve a more realistic response when transverse compressive stresses are
applied during tensile softening.

Volumetric boundaries (pore collapse, expansive breakup). The inelastic behavior under hydrostatic
pressure (as well as uniaxial compressive strain) exhibits no strain-softening but progressively stronger

(A.6)
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hardening caused primarily by collapse and closure of pores. It is simulated, by a compressive volumetric
boundary in the form of a rising exponential (Fig. 19D). A tensile volumetric boundary needs to be im-
posed, too. These boundaries are:

o = F, (—ey) = —Ek ks exp (— %) for op <0, (A7)
Eykicis

[1+ (cia/ki) ey — kiers))?

o =Ff(—ey) = for ap > 0. (A.8)

A.1. Unloading and stiffness degradation

To model unloading, reloading and cyclic loading with hysteresis, it is necessary to take into account the
effect of material damage on the incremental elastic stiffness. For virgin loading as well as reloading of any
component, the incremental (tangential) moduli are constant and equal to the initial elastic moduli £y, Ep
and E7;. An exception is the compressive hydrostatic reloading, for which, as experiments show, the re-
sponse never returns to the virgin loading curve given by the compressive hydrostatic boundary. Rather, the
slope Ey of reloading keeps being parallel to the boundary slope for the same ¢;, and thus the reloading
response moves parallel to the boundary curve.

Unloading is assumed to occur when the work rate o¢ (or increment cAc) becomes negative. This
unloading criterion is considered separately for each microplane stress component. The following empirical
rules for the incremental unloading moduli on the microplanes have been developed, with good results: for
ey <0 and oy <0:

C16 Oy
EY(—ey, — =F , A9
y(—€r,—ay) 4 <C1<> - + crecEy €V> (A.9)

and for ¢, > 0 and o, > 0:

EJ(ey,ay) =minloy(ey)/ev,Ev], Ep = (1 —c19)Ep + coE}, (A.10)
where, if opep <0: E5 = Ep; else

ES =min(op/ep, Ep), EY = (1 —ci9)Er + cioES, (A.11)

where, if arer <0: E3 = Er; else E = min(or/er, Er). cis, 16, €17 are fixed dimensionless parameters, and
superscript S denotes the secant modulus; ¢;; controls the unloading modulus, which equals the virgin
elastic modulus for ¢;; = 0 and the secant modulus for ¢;; = 1.
Material parameters. The default values of the adjustable parameters, denoted as k;, and the fixed

parameters, denoted as ¢;, and, are assumed as

ki =9.50 x 1073; ky = 200.0; ks = 15.0; ks = 100.0;

c; = 1.25; ¢ =0.22; c3 = 2.0; cq = 70.0; cs = 2.70; cs = 1.30;

Cc7 = 450, cg = 587 Cg = 130, Clo = 0737 Cl1 = 137 Clp = 125,

c13 = 0.27; c14 = 4500; c15 = 1.0; c16 = 0.02; c17 = 0.01; cig = 1.0;

c19 = 0.4, ¢y = 1.5; ¢ = 5.0; c»n = 1.0; e =4 ¢ = 0.7, cys = 1.55;

¢y = 10.0.

These parameter values, along with £=27,500 MPa, produce the uniaxial local stress—strain curve
plotted in Fig. 6a. The scaling of the local constitutive law M4, needed to match the stiffness and strength of



Z.P. Bazant, G. Di Luzio | International Journal of Solids and Structures 41 (2004) 7209-7240 7235

different types of concrete, can be easily controlled through the adjustable parameters (Caner and Bazant,
2000).

Appendix B. Alternative approach with averaging of inelastic strains (or inelastic stresses)

An alternative nonlocal generalization, proposed in Bazant et al. (1996a,b), has also been examined. To
prevent zero-energy modes of instability, the nonlocal concept must not be applied to the total strain e.
Rather, it must be applied to the inelastic strain (Pijaudier-Cabot and Bazant, 1987) or to some of its
parameters. The general local constitutive law may be written as

c=E:(e—¢€), (B.1)

where €’ is the inelastic strain (fracturing strain, softening plastic strain, etc.) and all the variables are

evaluated at x. A nonlocal version of (B.1) can simply be obtained by replacing the local inelastic strain €”
by nonlocal €”:

G—E:(c—&), &(x)= /V a(x, &)€ (&) dV (8), (B.2)

where a(x, ) is given by Eq. (9).

The constitutive model is here considered to be in an explicit form which gives the stress & as a function
of the total strain €, i.e. 6 = a(€), which is the case of microplane model M4 (as well as the preceding model
M3; Bazant et al., 1996a,b). Then the local inelastic strain may be calculated as

€' =e—C:a(e), C=E" (B.3)

Alternatively, one may subject to nonlocal averaging the inelastic stress ¢” defined as
¢"=E:€"=E:e—o(e), ¢ = / a(x, &)a” (&)dV (&). (B.4)
4

The results are of course exactly the same as for the averaging of the inelastic strain.
In this approach, an over-nonlocal formulation is obtained by

c=E:(e—¢), e=me" + (1 —m)e’, (B.5)

where € is the over-nonlocal strain and m is an empirical coefficient, as discussed before.

The replacement of local by nonlocal inelastic strain (Jirasek, 1998) has recently been found to provide
only a partial regularization. As pointed out by Jirdsek (1998), this kind of nonlocal model leads to nonzero
tensile (residual) stresses even at very large displacements across the localization band, which is unrealistic.
Therefore, the separation created by an open macroscopic crack cannot be modeled. This classical nonlocal
model works well in the peak and early post-peak regions of the effective stress—strain diagrams, but not
after the stress gets reduced to less than about one third of the peak stress. This has been proven theo-
retically (Jirasek, 1998), and numerically documented by the progressive expansion of the fracture process
zone. Fig. 20 shows, for the case of a one-dimensional bar, the evolution of the strain profile for different
values of m. Increasing the value of coefficient m (Fig. 20a), we see a broadening of the developing local-
ization band. If the value of m is reduced (Fig. 20c), we see a narrowing localization band, but the model
still eventually leads at collapse to a fracture process zone spread unrealistically along the entire bar.

It can, however, be shown that, in the one-dimensional case, the only solution with a finite localization
zone is that with a constant inelastic strain along the entire bar (an alternative proof of Jirdsek, 1998, is
given in the following). Considering the case of an infinite bar in which the fracture process zone % of a
nonzero length has developed, the nonlocal inelastic strain, taken from Egs. (B.2) and (B.3), must be
constant and its derivative must vanish:
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Q

¢’ = e — — = constant, (B.6)

by

o SR geea= | S ge@az=o (B.7)

dr ). o ox d

Let us consider point x, at the left boundary between the localization zone and the rest of the bar. The
integral in expression (B.7) has a positive value, because €”(xy) > 0; 0o/Or < 0 for » < R and 0o /0r = 0 for
r = R;sgn(xy — &) = —1 for & = xg, and so dé”(xp)/dx > 0. This means that Eq. (B.7) is not satisfied; so de¢”
cannot be constant in the fracture process band % . Therefore, the only possible solution with a nonzero
width of localization band is that with a constant inelastic strain along the bar (in this case de”(x)/dx = 0
Vxp). Properly, the inelastic strain must localize into a band of a certain finite width; moreover, the for-
mulation with over-nonlocal inelastic strain, Eq. (B.5), is not able to simulate the deformation process up to
the complete loss of cohesion. Even using a refined model with m > 1 in this nonlocal formulation with
over-nonlocal inelastic strain, Eq. (B.5), still exhibits unrealistic behavior (see Fig. 20).

Analyzing the special case of an infinite uniaxial bar, Planas et al. (1993, 1994) showed that, in the
integral nonlocal model with averaging of the inelastic strain, Eq. (B.2), the inelastic strain accepts a
solution consisting of a Dirac’s d-function. This makes this nonlocal model in the end physically equivalent
to the cohesive crack model.

The over-nonlocal formulation could be adjusted as follows. When fracture propagates, it is intuitive
that the interaction between material points across fracture becomes difficult and finally impossible. This
behavior could be captured by a nonlocal model with a decreasing characteristic length. Jirasek (1998)
proposed combining the nonlocal model with a model for discontinuities embedded in the finite elements,
and making the transition when the cracking strain reaches a certain value. This combination is able to
correct problems such as spurious shifting of the damage zone when body forces are significant (as in dams)
(Jirasek, 1999).

Taking inspiration from this combination, we may assume the coefficient m to be a function of the
maximum principal strain. Looking at Eq. (B.5), the linear combination coincides with the nonlocal model
for m = 1 and with the local model for m = 0. The local model may be considered as a nonlocal model with
a characteristic length equal to zero. Therefore, reducing m to zero in Eq. (B.5) is equivalent to reducing to
zero the characteristic length. The following formula has been considered in computations:

m:mo(l_ ({er — ) - C)" ) (B.8)

L+ (e — ) - O)

where my is the initial value for m, € is the critical strain value at which the characteristic length starts to
decrease, and C and n are two empirical parameters.

One problem connected with this adjustment is that objectivity can be lost when the deformation be-
comes large. Therefore, the tail of load-displacement curves could be spuriously influenced by mesh
refinement.

Appendix C. Numerical implementation

According to the definition of a nonlocal variable, the integral in Eq. (8) over all the volume V of the
structure is equal to the sum of the integrals over the individual finite elements. Therefore, the nonlocal
variable is computed via Gaussian quadrature, using the same sampling points as those used for integrating
the internal force vector of the finite element:
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f* (X) = C g O((X7 éni)f(ém’)mdet(‘]ﬂi)? (Cl)
n=1 i=1

Vi(x) = e f:oc(x,f )W detJ,, and f(x) :f*(x). (C2)
n=1 i=1 " I/r(X)

Hence W is the weight of integration point i, J,; is the Jacobian of the element n calculated at the integration
points i, N, is the number of elements, N, is the number of Gaussian integration points per element, and &
are the coordinates of integration points i in element 7.

As the computation proceeds, at each integration point, x, one needs the nonlocal quantity, which can be
evaluated by the following flowchart:

ni

1. Loop over elements n = 1,..., N.,.

(1) Loop over quadrature points i of the element .

(i) Compute the distance between the current point &,; and x. If the distance is greater than R, Eq. (10),

go to 2.

(ili) Compute and sum the contributions to ¥;(x) and f*(x).

(iv) End of the loop over the quadrature points.
2. End of the loop over the elements.
3. Divide the nonlocal quantity /*(x) by V.(x) (Eq. (C.2)).

The nonlocal model in Appendix B is computationally more expensive than that proposed in the main
text. In that approach one must first calculate the inelastic strain (Eq. (B.3)), calling the material subroutine
for each Gaussian point with a distance less than R (Eq. (10)), and then compute the final stress (Eq. (B.5))
calling the material subroutine.

Two different kinds of solution procedure for nonlinear finite element programs with updated
Lagrangian formulation are considered: the explicit solution for transient problems, and the implicit
solution for equilibrium problems (Belytschko et al., 2001). Because the microplane model is a three-
dimensional constitutive law, a three-dimensional eight-node brick element with 8 integration points is
implemented.

An explicit integration in time (based on the central difference method) is adopted. Although it is in-
tended for dynamics, it can be used also for quasi-static problems if the load is applied slowly and proper
damping is provided.

A drawback of the explicit time integration is that the time step must be very short because the elements
are small, because at least three elements need to fit within the characteristic length (but better more).
Another drawback is that solving a quasi-static problem with a dynamic algorithm requires imposing the
load very slowly, so as to make the inertial forces negligible.

The equilibrium solution is obtained as the limit of the dynamic solution when the accelerations vanish.
The objective of the solution is to make the residuals, corresponding to the out-of-balance forces, vani-
shingly small. To solve in each loading step the set of nonlinear algebraic equations, the modified version of
Newton—-Raphson method is used. To avoid the problems due to the lack of positive definiteness of the
tangent stiffness matrix in post-peak softening, the initial (elastic) stiffness matrix (K) has been employed in
all the computation. In the static problem (with rate-independent material), time ¢ is not the real time but
merely a monotonically increasing parameter. The flowchart for the equilibrium analysis is as follows:

1. Initial condition and initialization (n = 0, t = 0, dypgae = do); compute K and impose the homogeneous
displacement boundary conditions. Start a loop on load step.
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2. Loop on Newton-Raphson iterations for load increment 7 + 1.
3. Compute the internal forces f™(d,#*') and the residual r = f™(d, 7"*!) — £*'(d, "*"). Solve the linear
equations system Ad = —K 'r(d, 7*!). Impose the displacement non-homogenous boundary conditions

using the penalty method. Update d — d + Ad. Check convergence criterion ( ||Ad||, = (37 Ad? 12 <
g p y p g 153 i=1 i

7|l dupdaie — d,[|;,) and, if not met, go to 2.
4. Update the displacements, step count and time: """ « d, n «—n+ 1, t — ¢ + At.
5. Output. If # < ¢ go to 2.

If the initial stiffness matrix is used, the convergence in a highly nonlinear regime is slow. To accelerate
the convergence, a modified version of Thomas’ acceleration scheme (Sloan et al., 2000) is adopted. The
acceleration algorithm consists in rewriting the update displacement, for the ith Newton—Raphson itera-
tion, as follow:

d,‘ = d,‘,l + OC,',]Ad,‘ + A(_i, (C3)

where Ad; = — K 'r(d,_; + o, Ad;, "*1). In the first iteration of each time step, we assume oy = 1, and after
that the acceleration factor for the next iteration is obtained by a least-squares fit so that
o;Ad; = o;_1Ad; + Ad,. Solving for «; we obtain:

Ad! - Ad,

—_—. C4

o = 01 +

This algorithm needs two back-substitutions and two unbalanced force evaluations for each iteration. It is
quite robust and leads to a significant convergence acceleration (Sloan et al., 2000).

The procedure to calculate the internal force is the same for both time integration algorithms. The
flowchart is the following:

1. Initialize ™" = 0.
2. Loop over elements n = 1,..., N,. Initialize fiem’” =0.

(i) Loop over quadrature points &, i = 1,...,N,. Compute deformation measure, small strains, and the
nonlocal quantities according to Eqgs. (C.1) and (C.2). Compute stress ¢”(£) by nonlocal microplane
model constitutive law and then internal forces contribution f"" = ™" 4 BT6" (&) (&)J (&). End
loop over quadrature points.

(ii) Assemble f"" into the global f™". End the loop over elements.
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